Magic Methods in Python
Magic methods, also known as dunder (double underscore) methods, are special methods in Python that start and end with double underscores (__
).
These methods allow you to define the behavior of objects for built-in operations and functions, enabling you to customize how your objects interact with the
language's syntax and built-in features. Magic methods make your custom classes integrate seamlessly with Python’s built-in data types and operations.
Commonly Used Magic Methods
- Initialization and Representation
__init__(self, ...)
: Called when an instance of the class is created. Used for initializing the object's attributes.__repr__(self)
: Returns a string representation of the object, useful for debugging and logging.__str__(self)
: Returns a human-readable string representation of the object.
Example :
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def __repr__(self):
return f"Person({self.name}, {self.age})"
def __str__(self):
return f"{self.name}, {self.age} years old"
p = Person("Alice", 30)
print(repr(p))
print(str(p))
Output :
Person("Alice",30)
Alice, 30 years old
- Arithmetic Operations
__add__(self, other)
: Defines behavior for the+
operator.__sub__(self, other)
: Defines behavior for the-
operator.__mul__(self, other)
: Defines behavior for the*
operator.__truediv__(self, other)
: Defines behavior for the/
operator.
Example :
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __add__(self, other):
"""Add two points."""
return Point(self.x + other.x, self.y + other.y)
def __sub__(self, other):
"""Subtract two points."""
return Point(self.x - other.x, self.y - other.y)
def __mul__(self, scalar):
"""Multiply point by a scalar."""
return Point(self.x * scalar, self.y * scalar)
def __truediv__(self, scalar):
"""Divide point by a scalar."""
return Point(self.x / scalar, self.y / scalar)
def __repr__(self):
"""Return a string representation of the point."""
return f"Point({self.x}, {self.y})"
# Example usage:
p1 = Point(2, 3)
p2 = Point(4, 5)
# Add points
p3 = p1 + p2
print(p3) # Output: Point(6, 8)
# Subtract points
p4 = p1 - p2
print(p4) # Output: Point(-2, -2)
# Multiply point by a scalar
p5 = p1 * 3
print(p5) # Output: Point(6, 9)
# Divide point by a scalar
p6 = p2 / 2
print(p6) # Output: Point(2.0, 2.5)
- Comparison Operations
__eq__(self, other)
: Defines behavior for the==
operator.__lt__(self, other)
: Defines behavior for the<
operator.__le__(self, other)
: Defines behavior for the<=
operator.
Example :
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __eq__(self, other):
"""Check if two points are equal."""
return self.x == other.x and self.y == other.y
def __ne__(self, other):
"""Check if two points are not equal."""
return not self.__eq__(other)
def __lt__(self, other):
"""Check if this point is less than another point."""
return (self.x, self.y) < (other.x, other.y)
def __le__(self, other):
"""Check if this point is less than or equal to another point."""
return (self.x, self.y) <= (other.x, other.y)
def __gt__(self, other):
"""Check if this point is greater than another point."""
return (self.x, self.y) > (other.x, other.y)
def __ge__(self, other):
"""Check if this point is greater than or equal to another point."""
return (self.x, self.y) >= (other.x, other.y)
def __repr__(self):
"""Return a string representation of the point."""
return f"Point({self.x}, {self.y})"
# Example usage:
p1 = Point(2, 3)
p2 = Point(4, 5)
p3 = Point(2, 3)
# Equality
print(p1 == p2) # Output: False
print(p1 == p3) # Output: True
# Inequality
print(p1 != p2) # Output: True
print(p1 != p3) # Output: False
# Less than
print(p1 < p2) # Output: True
print(p1 < p3) # Output: False
# Less than or equal to
print(p1 <= p2) # Output: True
print(p1 <= p3) # Output: True
# Greater than
print(p1 > p2) # Output: False
print(p1 > p3) # Output: False
# Greater than or equal to
print(p1 >= p2) # Output: False
print(p1 >= p3) # Output: True
-
Container and Sequence Methods
__len__(self)
: Defines behavior for thelen()
function.__getitem__(self, key)
: Defines behavior for indexing (self[key]
).__setitem__(self, key, value)
: Defines behavior for item assignment (self[key] = value
).__delitem__(self, key)
: Defines behavior for item deletion (del self[key]
).
Example :
class CustomList:
def __init__(self, *args):
self.items = list(args)
def __len__(self):
return len(self.items)
def __getitem__(self, index):
return self.items[index]
def __setitem__(self, index, value):
self.items[index] = value
def __delitem__(self, index):
del self.items[index]
def __repr__(self):
return f"CustomList({self.items})"
cl = CustomList(1, 2, 3)
print(len(cl))
print(cl[1])
cl[1] = 5
print(cl)
del cl[1]
print(cl)
Output :
3
2
CustomList([1, 5, 3])
CustomList([1, 3])
Conclusion
Magic methods provide powerful ways to customize the behavior of your objects and make them work seamlessly with Python's syntax and built-in functions. Use them judiciously to enhance the functionality and readability of your classes.